Identification of neurite outgrowth-promoting domains of neuroglycan C, a brain-specific chondroitin sulfate proteoglycan, and involvement of phosphatidylinositol 3-kinase and protein kinase C signaling pathways in neuritogenesis.
نویسندگان
چکیده
Neuroglycan C (NGC) is a transmembrane-type chondroitin sulfate proteoglycan that is exclusively expressed in the central nervous system. We report that the recombinant ectodomain of NGC core protein enhances neurite outgrowth from rat neocortical neurons in culture. Both protein kinase C (PKC) inhibitors and phosphatidylinositol 3-kinase (PI3K) inhibitors attenuated the NGC-mediated neurite outgrowth in a dose-dependent manner, suggesting that NGC promotes neurite outgrowth via PI3K and PKC pathways. The active sites of NGC for neurite outgrowth existed in the epidermal growth factor (EGF)-like domain and acidic amino acid (AA)-domain of the NGC ectodomain. The EGF-domain caused cells to extend preferentially one neurite from a soma, whereas the AA-domain caused several neurites to develop. The EGF-domain also enhanced neurite outgrowth from GABA-positive neurons, but the AA-domain did not. These results suggest that the EGF-domain and AA-domain have distinct functions in terms of neuritogenesis. From these findings, NGC can be considered to be involved in neuritogenesis in the developing central nervous system.
منابع مشابه
Activation of phospholipase C pathways by a synthetic chondroitin sulfate-E tetrasaccharide promotes neurite outgrowth of dopaminergic neurons.
In dopaminergic neurons, chondroitin sulfate (CS) proteoglycans play important roles in neuronal development and regeneration. However, due to the complexity and heterogeneity of CS, the precise structure of CS with biological activity and the molecular mechanisms underlying its influence on dopaminergic neurons are poorly understood. In this study, we investigated the ability of synthetic CS o...
متن کاملModulation of H2O2- Induced Neurite Outgrowth Impairment and Apoptosis in PC12 Cells by a 1,2,4-Triazine Derivative
Introduction: Increased oxidative stress is widely accepted to be a factor in the development and progression of Alzheimer’s disease. Triazine derivatives possess a wide range of pharmacological activities including anti-oxidative and anti-in.ammatory actions. In this study, we aimed to investigate the possible protective effect of 3-thioethyl-5,6-dimethoxyphenyl-1,2,4-triazine (TEDMT) on H2O2-...
متن کاملPotentiation of Nerve Growth Factor-Induced Neurite Outgrowth by Fluvoxamine: Role of Sigma-1 Receptors, IP3 Receptors and Cellular Signaling Pathways
BACKGROUND Selective serotonin reuptake inhibitors (SSRIs) have been widely used and are a major therapeutic advance in psychopharmacology. However, their pharmacology is quite heterogeneous. The SSRI fluvoxamine, with sigma-1 receptor agonism, is shown to potentiate nerve-growth factor (NGF)-induced neurite outgrowth in PC 12 cells. However, the precise cellular and molecular mechanisms underl...
متن کاملThe Implication of Androgens in the Presence of Protein Kinase C to Repair Alzheimer’s Disease-Induced Cognitive Dysfunction
Aging, as a major risk factor of memory deficiency, affects neural signaling pathways in hippocampus. In particular, age-dependent androgens deficiency causes cognitive impairments. Several enzymes like protein kinase C (PKC) are involved in memory deficiency. Indeed, PKC regulatory process mediates α-secretase activation to cleave APP in β-amyloid cascade and tau proteins phosphorylation mecha...
متن کاملP3: Mechanisms of TrkB-Mediated Hippocampal Long-Term Potentiation in Learning and Memory
Long-term potentiation (LTP) is a process that certain types of synaptic stimulation lead to a long-lasting enhancement in the strength of synaptic transmission. Studies in recent years indicate the importance of molecular pathways in the development of memory and learning. Tropomyosin receptor kinase B (TrkB) is a member of the neurotrophin receptor tyrosine kinase family, that its ligand is b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 281 34 شماره
صفحات -
تاریخ انتشار 2006